Characterization of Solvable Groups and Solvable radical

نویسندگان

  • Fritz Grunewald
  • Boris Kunyavskii
  • Eugene Plotkin
چکیده

We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvable $L$-subgroup of an $L$-group

In this paper, we study the notion of solvable $L$-subgroup of an $L$-group and provide its level subset characterization and this justifies the suitability of this extension. Throughout this work, we have used normality of an $L$-subgroup of an $L$-group in the sense of Wu rather than Liu.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM

In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...

متن کامل

Thompson-like Characterization of the Solvable Radical

We prove that the solvable radical of a finite group G coincides with the set of elements y having the following property: for any x ∈ G the subgroup of G generated by x and y is solvable. We present analogues of this result for finite dimensional Lie algebras and some classes of infinite groups. We also consider a similar problem for pairs of elements.

متن کامل

Thompson-like Characterization of the Solvable Radical

We prove that the solvable radical of a finite group G coincides with the set of elements y having the following property: for any x ∈ G the subgroup of G generated by x and y is solvable. We present analogues of this result for finite dimensional Lie algebras and some classes of infinite groups. To Charles Leedham-Green on his 65th birthday

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013